Sparse Approximate Solutions to Semidefinite Programs
نویسنده
چکیده
We propose an algorithm for approximately maximizing a concave function over the bounded semi-definite cone, which produces sparse solutions. Sparsity for SDP corresponds to low rank matrices, and is a important property for both computational as well as learning theoretic reasons. As an application, building on Aaronson’s recent work, we derive a linear time algorithm for Quantum State Tomography.
منابع مشابه
A semidefinite relaxation scheme for quadratically constrained
Semidefinite optimization relaxations are among the widely used approaches to find global optimal or approximate solutions for many nonconvex problems. Here, we consider a specific quadratically constrained quadratic problem with an additional linear constraint. We prove that under certain conditions the semidefinite relaxation approach enables us to find a global optimal solution of the unde...
متن کاملISSN 1342-2804 User Manual for SparsePOP: a Sparse Semidefinite Programming Relaxation of Ppolynomial Optimization Problems
SparesPOP is a MATLAB implementation of a sparse semidefinite programming (SDP) relaxation method for approximating a global optimal solution of a polynomial optimization problem (POP) proposed by Waki et al. The sparse SDP relaxation exploits a sparse structure of polynomials in POPs when applying “a hierarchy of LMI relaxations of increasing dimensions” by Lasserre. The efficiency of SparsePO...
متن کاملApproximation Algorithms for Semidefinite Packing Problems with Applications to Maxcut and Graph Coloring
We describe the semidefinite analog of the vector packing problem, and show that the semidefinite programming relaxations for Maxcut [10] and graph coloring [16] are in this class of problems. We extend a method of Bienstock and Iyengar [4] which was based on ideas from Nesterov [24] to design an algorithm for computing 2-approximate solutions for this class of semidefinite programs. Our algori...
متن کاملSmooth Optimization with Approximate Gradient
We show that the optimal complexity of Nesterov’s smooth first-order optimization algorithm is preserved when the gradient is only computed up to a small, uniformly bounded error. In applications of this method to semidefinite programs, this often means computing only a few dominant eigenvalues of the current iterate instead of a full matrix exponential, which significantly reduces the method’s...
متن کاملApproximating Semidefinite Packing Programs
In this paper we define semidefinite packing programs and describe an algorithm to approximately solve these problems. Semidefinite packing programs arise in many applications such as semidefinite programming relaxations for combinatorial optimization problems, sparse principal component analysis, and sparse variance unfolding techniques for dimension reduction. Our algorithm exploits the struc...
متن کامل